More Power! Tim’s bonus battery bonanza, Part III

~ A special, highly technical, data-driven guest series written by Tim ~

Tim the Tool Man’s “More power” grunt is repeated often around here.
(source: Giphy)

Readers of my electrical system articles likely fall into two groups: those in suspense since February, and those scratching their heads trying to remember the subject of these series.

If you’re in the latter group, Part I of the series covered the planning and design, while Part II discussed research, costs and equipment selections. For Part III, roll up your sleeves!

“I hit my head. It is what I do.”

Installation took longer than expected. No surprise. It also caused me to grimace and repeatedly mutter the above statement. Working extended periods in the belly of The Toad involved contortionism and a couple of bandaids, but the results have been worth it.

The oriented strand board (OSB) used in the RV’s front compartment wall complicated installation of the inverter, as the material does not hold screws well compared to plywood. To address this, I built a back panel from plywood covered by thin metal plates to deflect heat generated by the inverter.

Four t-bolts were used to hang the 40 pound inverter (see Figure 1), while screws were driven in from the basement side (thus gripping into the plywood) to hold the combined weight.

Figure 1

Rough Wiring the Service Feed

Two 240V/50A lines were run from near the circuit panel to the front compartment to complete the new service feed. The Electrical Management System (EMS) (Figure 2) was attached to the floor behind the basement wall after connecting the output side to one of the feed lines. Both cable runs were attached to the basement ceiling using strap hangers.

Lesson learned: pick screws just large enough to hold the cables while still short enough to not poke through the floor. Ouch!

Figure 2

Other Puzzle Pieces

Heavy duty (4/0, “four aught”) cabling connects the batteries and smaller components with the inverter. I made custom-length cables, saving money and weight. To determine the correct lengths, I placed the battery cutout switch, the shunt, and the battery fuse where I wanted them on the RV’s front compartment wall, and then built each cable to fit between them.

Newer Heartland RVs have battery cut-out switches to isolate the batteries from the RV’s electrical system for safety and maintenance. Our 2008 Bighorn lacked this feature, so I added a Blue Sea Systems m-Series switch.

Lesson learned: The m-Series is rated for high-amp circuits, but required modification to fit the large cable; the e-Series switch would have been a better choice.

The fuse block (lower left corner of Figure 3’s right panel) is used to protect the system, while the shunt provides the means to measure performance using the Pentametric monitoring system. One wire from each side of the shunt is connected to the input unit. Additional small gauge wires provide power and temperature readings. The battery interconnects provide a series-parallel configuration. I found Spax screws provide better holding power for components mounted on the OSB.

Figure 3

Custom Cables

Making custom-length cables is as easy as measuring, cutting, stripping and crimping, right? Close. The process is simple, although three special tools and a couple of tricks are helpful.

Because of the 4/0s thickness, bends take extra room and cables should be laid out before cutting; high quality welding cable is a better choice than battery-grade cable because it uses numerous flexible small strands instead of fewer larger conduits.

Before cutting (measure twice!) consider how much cable will go into the end of the lug or other terminals being used (see Figure 4).

Figure 4

Lesson learned: I used the saw method of cutting the cable, but then had to use scissors to taper the cable ends to fit into the lugs. Buy cutters suitable for 4/0 cable; they will make the work easier, and keep you from being asked, “What the heck happened to the scissors?”

After cutting,  I used a simple utility knife to strip back the rubber sheath (and then scissored the strands to death). Apply antioxidant to the exposed strands and inside the lug before crimping. I used a regular hammer to strike the crimper (see Figure 5), but a 2 lb mallet makes for easier work.

Figure 5
(source: eBay)

Some Assembly Required

Once the 12V cable runs were completed between the inverter and through the fuse block, shunt, and switch, I connected the two pairs of 240V/50A legs (not live yet) to the inverter. Completing this before installing the battery box gave me more room to work in the front compartment as I worked on my back looking up.

Yes, I hit my head. It is what I do.

The battery box I wanted, which was the one recommended specifically for the quantity and size of batteries I have, would have taken a few days to ship. My goal was to complete the project before we headed to Quartzsite, AZ, for boondocking, so I fashioned one from locally-available options (Full disclosure: I actually fashioned two, the first prototype being an epic failure).

A Durabilt Storage Tote (Figure 6) is large enough to fit the four 6V deep cycle batteries, and has the added benefit of being considerably cheaper than the aforementioned special-purpose box. To keep it sealed and safe (charging flooded batteries releases gasses that must be vented to the outside), I added weather stripping to the top edge of the box, and a vent line to the outside.

Figure 6

Inexpensive straps were fastened to the RV’s steel compartment floor to hold the box firmly in place. Look closely at the picture of the box and you’ll also see a hole, near the bottom, that allows fresh air to be drawn into the box, ensuring proper venting.

Installing the battery box and finalizing the cables up to the inverter was pretty straightforward. Don’t forget to run properly gauged wires from new battery bank to the existing bussbar providing 12V to the RV’s fuse panel.

Lesson learned: Connect these to the output sides of the switch and shunt vice the battery bank terminals to include the draw in system monitoring and safety cut-outs.

Instrumentation lines were run, based on the component instructions, back to the cabinet inside the coach near the existing instrument panel. The cabinet contains all of the monitoring boxes with incorporated displays (Figure 7). Later, I added the Pentametric computer interface module by my desk, using a separate instrumentation line tapped off behind the basement wall.

Figure 7

At this stage it was time to pause and double check all the wiring and installations because the next step involves removing the RV from all shore and 12V power sources, and rewiring the circuit panel (Figure 8) and EMS. ***MAKE SURE YOU HAVE NO ELECTRICAL POWER IN THE RV.***

Figure 8

My wiring from the shore power connection was long enough that I could run it to the EMS after disconnecting from the circuit panel. The wiring I ran from the inverter’s output was then connected to the circuit panel.

Testing

Without any fanfare, after days of work, I reconnected shore power and flipped the switch.

The 120V light in the RV was dimmer than a sleazy bar. I was crushed, and I had no idea what was wrong, but I clearly wasn’t getting adequate voltage. I quickly realized the problem could be with the inverter or the EMS, but I didn’t know how to test either one.

In desperation, I killed shore power, followed the reset procedures for the inverter, and tried again. Presto! To this day, I don’t know why the first test failed, and I have only had one incident requiring an inverter reset since then.

The next day we got underway for Quartzsite, AZ, where we parked alongside friends and fellow RVers for 12 days of boondocking. The system worked great as I continued to make tweaks and learn the intricacies of using an inverter to provide 120V power from batteries.

One lesson involved just how many amps were used in charging the battery bank; I am not able to run the generator in econo-mode until the bulk charging stage is complete.

There were other lessons too, but I’ve maxed my word count, and probably your attention span too. Feel free to comment below or contact us via our Facebook Page if you have any specific questions.

Disclaimer: Electricity and electrical systems can be dangerous to living things and electrical equipment if not handled properly. What I write will convey my own experiences. If you or anyone else should choose to use any of the information in this post, you do so at your own risk. If you’re not comfortable handling electrical circuits or equipment, find someone who is knowledgeable about such things to help you.

(Author’s note:  a version of this post appears at Heartland RVs. It is printed here with permission.)

 

More Power! Tim’s bonus battery bonanza, Part II

~ A special, highly technical, data-driven guest series written by Tim ~

Tim the Tool Man’s “More power” grunt is repeated often around here.
(source: Giphy)

Did you know February 18th is National Battery Day? The history of this auspicious day must be electrifying, right? We’ll never know as my Internet search for this was a bust, but celebration of this day is a good backdrop to part II of our 2008 Heartland Bighorn electrical system upgrade (please read part I first). This second installment discusses equipment research, costs, and selections of the new components.

Costs and Suppliers

Gratefully, a budget wasn’t a limiter for this project; that said, I did not simply buy name-brand items or potentially overpriced packaged kits. Using a mix of online and local sources (to save time), I researched the best specifications for our requirements, and sought out the least expensive sources. My pre-tax and shipping & handling expenses were just over $2,900.

Many suppliers in the solar and renewable energy industries carry the necessary parts, most of which I found on the websites previously mentioned in Part I, or through my own searches. I was generally happy with all of them: Factory Motor Parts, solarseller.com, altestore.com, and the lowest price providers I was able to find on amazon.com.

 

RV Batteries 

The RV dealer where we purchased our used Heartland Bighorn had installed the typical underwhelming RV/Marine 12V battery that barely provided enough juice get us through half a night of parking without hookups, especially if operating the furnace. True deep cycle batteries are the best for RV coach applications. Please search the Internet or ask in the comments below if you do not understand why.

Our requirements, discussed in Part I, showed we needed a battery bank capable of at least 400 amp-hours of energy (capacity), but I still had to decide on the type, voltage and manufacturer. Being a systems engineer, I identified important factors, and gathered data.

Weight (capacity per pound) was an initial focus. Lithium batteries (superb weight per amp-hr ratio) are an option, but I could not justify the cost. I also initially considered Absorbent Glass Mat (AGM) batteries, and would have gladly spent the extra money for them if warranted. The main benefits of AGMs include being able to use them in/near living spaces, operating them in extreme temperatures, and not having to do routine maintenance. The first two were not relevant in our application, and I personally prefer to put my hands on such a critical system component once a month. Combine this with the cost savings benefit of flooded lead batteries, and they became the obvious choice.

Two common approaches to provide 12V battery power in an RV are to use 12V batteries, or to combine two 6V batteries in series. However, a single 12V battery, or a single pair of 6V batteries, will leave you “dead in the water” if just one battery fails. Solutions with multiple 12V, or four or more 6V batteries provide important redundancy and capacity. Deep cycle 12V batteries exist, but their limited capacity means more are required. I opted for 6V golf cart batteries.

Trojan Battery Company’s T-105 6V batteries are a popular choice for RVers. I found Factory Motor Parts has FVP-labeled batteries they stated are made at the Trojan plant in California. The warranty isn’t quite as long, but at 75% of the cost, it was worth the gamble. The design and specifications match the T-105s.

Inverter/Charger

Inverters apparently don’t rate their own day of celebration, but they’re important for RVers who want to boondock (dry camp) and be able to use their household-like appliances. An inverter changes 12V into 120V electricity — or as my wife says, “It performs magic!”

This purchase required the most research time after the battery decision.  The analysis in Part I of this series sized our inverter in the 2,000 to 3,000 watt range. I knew the 2,000W model would be sufficient if we managed the electrical load properly. To better protect my plethora of computers and electronics, I chose a pure sine wave inverter vice a modified sine variant. In most cases, using a combined inverter/charger (to keep those special batteries running) makes sense.

My research confirmed why many choose Magnum Energy products, but I selected a different brand for two reasons. First, most larger coaches take two 50A live wires (i.e., legs) from shore power, routing it to the inside circuit panel. This panel is designed to handle these currents, whereas not all inline inverters are. I only found one inverter I was confident could handle two full 50A legs. According to Jack Mayer, others existed previously, but most manufacturers now expect installation of a dedicated sub-panel for use by inverted loads. I felt the extra cost, work and weight outweighed the benefits. Please note my approach requires more personal discipline with load management.

The second reason was value. The option I chose doesn’t require the extra sub-panel and it meets or exceeds the specifications of comparable Magnum inverters at a fraction of the cost. The IC-2000-12 is a new product by GoPower (gpelectric.com), a reputable company involved with inverters and solar technologies for many years. On Amazon, I was able to get the IC-2000-12 with the remote controller for several hundred dollars less than a comparable Magnum product.

Electrical Management System (EMS/Surge Protection)

Most long-time RVers I’ve spoken with can confirm that they’ve parked at locations with poor electrical shore power. Our older Bighorn came with a simple electrical setup that brought the shore power straight to the circuit panel. There was no convenient and simple way to ensure there was quality electricity feeding my sensitive computers and other appliances. The project already called for shore power service to be re-routed through the inverter, so the timing was right. This was one situation where I skipped independent research and trusted recommendations for the Progressive Industries EMS-HW50C, a box that is hardwired in the service line before the inverter.

System Monitoring & Control

The inverter and the EMS came with remote monitors/controllers, but I didn’t have anything to monitor my new battery bank, and I neeeeded that. Really. Seriously.

Do-it-yourself designers often look to Bogart Engineering’s Trimetric for their battery monitors. Thirty seconds on their website was all it took for me to realize that wouldn’t be sufficient. Remember when I said I was a geek? Get ready to get it on, because Bogart Engineering has the PentaMetric for us misfits — two more better than the Trimetric! The PentaMetric allows a computer to program and control the battery monitor, and capture bunches of data on the battery bank’s state, even every minute. Overkill? Perhaps for mere mortals.

Kidding aside, the former owner of Bogart Engineering stated that the PentaMetric is a superb tool to see the performance of your system over time, and to identify problems before they get worse and potentially cause damage. Right up my alley.

Other Stuff

Our beloved batteries and other equipment form the core of an upgraded RV electrical system. Cabling/wires, connectors, fuses, switches and shunts tie the components into a usable system. These need to be sized properly for safety and performance. An inverter’s installation manual may include cable size requirements, but they are likely to be the minimum. Connectors get sized based on the cable’s size and the size and type of the terminal.

In the final installment of this series, I’ll cover more about cable and connector sizing while showing the steps taken to complete our installation. And no project of this magnitude is going to be completed without learning some lessons. Stay tuned!

Disclaimer: Electricity and electrical systems can be dangerous to living things and electrical equipment if not handled properly. What I write will convey my own experiences. If you or anyone else should choose to use any of the information in this post, you do so at your own risk. If you’re not comfortable handling electrical circuits or equipment, find someone who is knowledgeable about such things to help you.

(Author’s note:  a version of this post appears at Heartland RVs. It is printed here with permission.)